
Точные метрики: рассечение гендерной динамики в парных наборах данных программирования
1 августа 2025 г.Таблица ссылок
Аннотация иI. Введение
II Фон и связанная работа
A. Обучение программированию: царапины и парное программирование
B. Пол в программировании образования и программирования пар
Iii. Дизайн курса
A. Представление молодых учеников с помощью программирования
B. Реализация парного программирования
C. График курса
IV Метод
A. Pre-Study и B. Сбор данных
C. Набор данных и D. Анализ данных
E. Угрозы достоверности
V. Результаты
А. RQ1: Отношение
Б. RQ2: поведение
C. RQ3: код
VI Выводы и будущая работа, подтверждения и ссылки
C. Набор данных
В общей сложности 139 детей, 56 девочек и 83 мальчика, из шести разных школ приняли участие в курсе. Из них 32 ученика посещали начальную школу и 107 средней школы в местном районе Пассау. Средний возраст составлял 11,18 лет (F: 11,16, M: 11,20), и большинство студентов (120) указали, что они хорошо знали своего партнера (немного: 12, не так хорошо: 7). Более половины детей заявили, что у них вообще не было опыта программирования (F: 35, M: 45), в то время как 59 учеников уже немного запрограммировали (F: 14, M: 21) или даже немного больше (F: 7, M: 17). В общей сложности было 71 пара, из которых 66 были пар по двум (FF: 26, FM: 3, MM: 37). Однако из -за отсутствия отдельных студентов в классах также были группы из трех и одного человека, которые были исключены из анализа.
D. Анализ данных
Чтобы идентифицировать гендерные характеристики, наша независимая переменная-это созвездие пары: все женские, все мужские и смешанные пар. Чтобы определить влияние этого созвездия на зависимые переменные отношения, поведения и результата программирования, мы рассматриваем вопросы исследования следующим образом.
1) RQ1: отношение:Чтобы ответить на RQ1, мы рассматриваем ответы учащихся на обследование, касающееся их отношения к программированию и дизайну курса, то есть удовольствие и трудности задач и назначенных их ролей.
а) Отношение к программированию:Чтобы определить изменения в отношении к программированию, мы проводим парное сравнение того, думают ли студенты программирование круто до и после курса. Мы измеряем статистические различия с использованием теста суммы ранга Уилкоксона с α ≤ 0,05.
б) Отношение к задачам курса:Чтобы измерить общее гедонистическое качество задач [49], мы суммируем значения Лайкерта снова с большим столом Ag ([1,3]) и смаймометра Fu ([1,5]) для каждого студента и задачи (Таблица I). Преобразование значений снова с увеличением свыше всего таблицы соответствует диапазону значений из трех градаций, где 1 является самым низким значением (NO), а 3-самое высокое значение (да). Значения смайтометра соответствуют 5-балльной шкале Лайкерта, с наилучшим значением, представляющим 5, и самое низкое значение, представляющее 1. Для каждого учащегося и задачи мы получаем значение в интервале [2,8], предполагая, что они выполняли все задачи-в противном случае интервал адаптирован к выполненным задачам, чтобы иметь возможность составить различные константы пар. Сумма каждой пары нормализована до [0,1] со следующей формулой:
Кроме того, для каждой пары созвездий мы оцениваем задачи, которые студенты наслаждались самыми и наименьшими, основанными на своих цветных наклейках. Для этого мы суммируем количество каждой наклейки ученика для каждой задачи и созвездия и предоставляем относительное число на задачу. Чтобы определить, какую задачу ученики считали простым или трудным, мы используем тот же метод для наклеек для самой простой и сложной задачи.
в) отношение к ролям ПП:Чтобы определить, предпочитали ли студенты роль драйвера или навигатора, мы рассмотрим отзыв от Smileyometer LR (таблица I). Следовательно, сумма значений каждого студента в смайометре образуется для обеих ролей. Таким образом, два списка на одного учащегося создаются в интервале [3,15], хотя с потенциальными отклонениями, поскольку студенты могут не придерживаться точно соответствия ролям, и некоторые задачи не могут быть обработаны из -за технических проблем. Эти значения интервала снова нормализованы в диапазоне [0,1] с использованием уравнения (1). После нормализации мы сравниваем значения внутри и между парными созвездиями для каждой задачи, а также для соответствующей роли в общей сложности. Мы измеряем статистические различия с использованием теста на сумму ранга Манна-Уитни-У на уровне значимости α ≤ 0,05.
2)RQ2: поведение:Чтобы ответить на RQ2, мы рассмотрим реакцию опроса руководителей из опроса, касающиеся шести категорий (Таблица I). Мы суммируем значения Лайкерта каждой категории ([1,5]) для каждой пары и задачи. Для каждой пары и задачи мы получаем значение в интервале [6, 30] на категорию, предполагая, что они выполнили все задачи - иначе интервал адаптирован к выполненным задачам. Эти значения интервала нормализованы в диапазоне [0,1] с использованием уравнения (1), чтобы иметь возможность сравнить различные созвездия пар. Эти нормализованные значения затем агрегируются для каждой пары созвездия и делятся на количество пар на созвездие. Таким образом, у нас есть шесть значений для каждой пары созвездия, по одному на категорию. Мы снова измеряем статистические различия между парой созвездий, используя тест на сумму ранга Манна-Уитни-U на уровне значимости α ≤ 0,05.
3)RQ3: код:Чтобы ответить на RQ3, мы рассмотрим действия, выполняемые во время кодирования, и полученные программы с точки зрения показателей кода, качества и творчества. Чтобы определить, как учащиеся взаимодействуют с средой царапины во время программирования, мы регистрируем все их взаимодействия (события) в течение курса. Чтобы оценить код программ, мы используем инструмент для статического анализа муфта [50] для анализа числа и типов используемого блока, а также сложности, представленной межпроцедурной версией цикломатической сложности (ICC), основанной на графике межпроцедурного контрольного потока. Чтобы измерить качество программ, мы определяем плохо написанный код (кодовые запахи или ошибки) [50] и особенно хорошо написанный код (кодовые духи) [51]. Чтобы оценить креативность программ, мы определяем используемые спрайты и стадии блоков, которые отличаются от нашей образец нейтральной пола, и какие дополнительные задачи они выбрали в обеих свободных задачах (раздел III-C5).
Авторы:
(1) Изабелла Грассл, Университет Пассау, Пассау, Германия (isabella.grassl@uni-passau.de);
(2) Гордон Фрейзер, Университет Пассау, Пассау, Германия (gordon.fraser@uni-passau.de).
Эта статья есть
Оригинал