Результаты создания Llama 2: предсказание много-токного на контрольных показателях

Результаты создания Llama 2: предсказание много-токного на контрольных показателях

10 июня 2025 г.

Аннотация и 1. Введение

2. Метод

3. Эксперименты по реальным данным

3.1. Шкала преимуществ с размером модели и 3,2. Более быстрый вывод

3.3. Изучение глобальных моделей с помощью мульти-байтового прогноза и 3.4. Поиск оптимальногоне

3.5. Обучение для нескольких эпох и 3.6. Создание нескольких предикторов

3.7 Многократный прогноз на естественном языке

4. Абляции на синтетических данных и 4.1. Индукционная способность

4.2. Алгоритмические рассуждения

5. Почему это работает? Некоторые спекуляции и 5.1. Lookahead Укрепляет очки выбора

5.2. Информация теоретичный аргумент

6. Связанная работа

7. Заключение, Заявление о воздействии, воздействие на окружающую среду, подтверждения и ссылки

A. Дополнительные результаты по самопрокативному декодированию

Б. Альтернативные архитектуры

C. Скорость тренировок

D. МАГАЗИН

E. Дополнительные результаты по поведению масштабирования модели

F. Подробности о CodeContests Manetuning

G. Дополнительные результаты по сравнению с естественным языком

H. Дополнительные результаты по абстрактному текстовому суммированию

I. Дополнительные результаты по математическим рассуждениям на естественном языке

J. Дополнительные результаты по индукционному обучению

K. Дополнительные результаты по алгоритмическим рассуждениям

L. Дополнительные интуиции по многоцелевым прогнозам

М. Обучение гиперпараметры

D. МАГАЗИН

Table S6: Finetuning LLama 2 with multi-token prediction does not significantly improve performance. We tried to finetune LLama 2 with 4-token prediction but this did not yield significant improvements compared to the baseline. We suppose that this new loss changes the initialization too brutally and never really recovers. We still some improvements for example on MBPP Pass@1. All runs use 200B tokens of code.

Эта статья естьДоступно на ArxivПод CC по лицензии 4.0.

Авторы:

(1) Фабиан Глокл, ярмарка в Meta, Cermics Ecole des Ponts Paristech и внес свой вклад;

(2) Badr Youbi Idrissifair в Meta, Lisn Université Paris-Saclay и внес свой вклад;

(3) Baptiste Rozière, ярмарка в Meta;

(4) Дэвид Лопес-Паз, ярмарка в Мете и его последний автор;

(5) Габриэль Синнев, ярмарка в Meta и последний автор.


Оригинал
PREVIOUS ARTICLE
NEXT ARTICLE