Противостояние мультимодальным проблемам LLM: рассуждения о пробелах и компромиссах безопасности в Phi-3-Vision

Противостояние мультимодальным проблемам LLM: рассуждения о пробелах и компромиссах безопасности в Phi-3-Vision

10 июля 2025 г.

Аннотация и 1 введение

2 технические характеристики

3 академические тесты

4 Безопасность

5 Слабость

6 Phi-3-Vision

6.1 Технические спецификации

6.2 академические тесты

6.3 Безопасность

6.4 Слабость

Ссылки

Пример подсказки для тестов

B Авторы (алфавитный)

C подтверждения

6.4 Слабость

Что касается многомодальных возможностей LLM нашего Phi-3-Vision, он превосходно работает в различных областях. Тем не менее, мы определили определенные ограничения, особенно с вопросами, требующими способностей к рассуждениям высокого уровня. Кроме того, наблюдалось, что модель иногда генерирует неземные выходы, что делает ее потенциально ненадежным в чувствительных областях, таких как финансы. Чтобы смягчить эти проблемы, мы включим больше данных DPO, ориентированных на рассуждения и галлюцинации, в будущее в будущем.

С ответственной точки зрения ИИ, в то время как безопасность после тренировки добилась значительных успехов, наше висиальное визит PHI3 иногда не воздерживается от ответа на вредные или чувствительные запросы. Примеры таких случаев включают расшифровку конкретных типов CAPTCHA и описание мошеннических изображений, содержащих дезинформацию или галлюцинацию. Мы находим, что этот вопрос частично возникает из возможностей, таких как OCR, приобретенных во время учебного процесса с обычными наборами данных по настройке инструктов, которые можно рассматривать как компромисс между полезностью и безвредностью. Двигаясь вперед, нам нужно дополнительно изучить эту область, чтобы достичь лучшего баланса.

Table 3: Comparison results on public and private multi-modal RAI benchmarks. Note that all metrics in the table are [0,10] and a higher value indicates a better performance.

Figure 7: Comparison of categorized RAI performance of Phi-3-Vision with and without the safety post-training on the VLGuard (left) and Internal (right) benchmark, respectively. It clearly indicates that safety post-training can enhance the RAI performance across nearly all the RAI categories.

Авторы:

(1) Мара Абдин;

(2) Сэм Аде Джейкобс;

(3) Аммар Ахмад Аван;

(4) jyoti aneja;

(5) Ахмед Авадаллах;

(6) Hany Awadalla;

(7) Нгуен Бах;

(8) Амит Бахри;

(9) Араш Бахтиари;

(10) Цзянмин Бао;

(11) Харкират Бел;

(12) Алон Бенхайм;

(13) Миша Биленко;

(14) Йохан Бьорк;

(15) Sébastien Bubeck;

(16) Цин Цай;

(17) Мартин Кай;

(18) Caio César Teodoro Mendes;

(19) Вейджу Чен;

(20) Вишрав Чаудхари;

(21) Донг Чен;

(22) Дундонг Чен;

(23) Йен-Чун Чен;

(24) Йи-Линг Чен;

(25) Парул Чопра;

(26) Xiyang Dai;

(27) Элли Дель Джирно;

(28) Густаво де Роза;

(29) Мэтью Диксон;

(30) Ронен Эльдан;

(31) Виктор Фаросо;

(32) Дэн Итер;

(33) Мэй Гао;

(34) мин Гао;

(35) Цзянфенг Гао;

(36) Амит Гарг;

(37) Абхишек Госвами;

(38) Сурия Гунасекар;

(39) Эмман Хайдер;

(40) Junheng Hao;

(41) Рассел Дж. Хьюитт;

(42) Джейми Хьюнх;

(43) Mojan Javaheripi;

(44) Синь Джин;

(45) Пьеро Кауфманн;

(46) Никос Карампатцциакис;

(47) Dongwoo Kim;

(48) Махоуд Хадеми;

(49) Лев Куриленко;

(50) Джеймс Р. Ли;

(51) Инь Тэт Ли;

(52) Юаньжи Ли;

(53) Юншенг Ли;

(54) Чен Лян;

(55) Ларс Лиден;

(56) CE Liu;

(57) Менгхен Лю;

(58) Вайшунг Лю;

(59) Эрик Лин;

(60) Zeqi Lin;

(61) Чонг Луо;

(62) Пиюш Мадан;

(63) Мэтт Маццола;

(64) Ариндам Митра;

(65) Хардик Моди;

(66) ANH NGUYEN;

(67) Брэндон Норик;

(68) Барун Патра;

(69) Даниэль Перес-Бекер;

(70) Портет Томаса;

(71) Рейд Прайзант;

(72) Хейанг Цинь;

(73) Марко Радмилак;

(74) Корби Россет;

(75) Самбудха Рой;

(76) Olatunji Ruwase;

(77) Олли Саарикиви;

(78) Амин Саид;

(79) Адил Салим;

(80) Майкл Сантакрос;

(81) Шитал Шах;

(82) Нин Шан;

(83) Хитеши Шарма;

(84) Свадхин Шукла;

(85) Sia Song;

(86) Масахиро Танака;

(87) Андреа Тупини;

(88) Синь Ван;

(89) Лиджуань Ван;

(90) Чуню Ван;

(91) Ю Ван;

(92) Рэйчел Уорд;

(93) Гуанхуа Ван;

(94) Филипп Витте;

(95) haiping wu;

(96) Майкл Уайетт;

(97) бен Сяо;

(98) может XU;

(99) Цзяхан Сюй;

(100) Weijian Xu;

(101) Сонали Ядав;

(102) вентилятор Ян;

(103) Цзяньвей Ян;

(104) Зийи Ян;

(105) Йифан Ян;

(106) Донган Ю;

(107) Лу Юань;

(108) Chengruidong Zhang;

(109) Кирилл Чжан;

(110) Цзянвен Чжан;

(111) Ли Лина Чжан;

(112) И Чжан;

(113) Юэ Чжан;

(114) Юнан Чжан;

(115) Ксирен Чжоу.


Эта статья естьДоступно на ArxivПод CC по лицензии 4.0.


Оригинал
PREVIOUS ARTICLE
NEXT ARTICLE